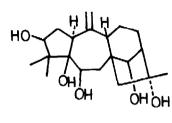
RELAY TOTAL SYNTHESIS OF GRAYANOTOXIN II

Shinsei Gasa, Nobuyuki Hamanaka, Seiji Matsunaga, Toshikatsu Okuno, Naoki Takeda and Takeshi Matsumoto*

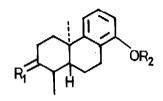
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan (Received in Japan 8 December 1975; received in UK for publication 2 January 1976)

In a previous paper we reported a partial synthesis¹ of grayanotoxin $II^{2}(1)$ from a tricyclic degradation product 2. We now describe synthesis of tricyclic diketone 3 in a racemic form and interconversion of 2 and 3 using their optically active forms. Taken together with the previous partial synthesis, the present work constitutes the first total synthesis of a grayanoid³.

3-0xo-4,10-dimethyl-14-methoxy-1,2,3,6,7,10-hexahydrophenanthrene 4^4 was reduced to A,B <u>trans</u> octahydrophenanthrene 5 (mp 141-142°) with Li-NH₃(1)-t-BuOH. Sequential hydrolysis (HI-AcOH) of methyl ether and ketalization of the hydrolytic product gave ethylene ketal $5^{5,6}$ (mp 193-194°) in a 70% overall yield from 4. The ketal was then hydrogenated over W-7 Raney Ni in ethanol containing KOH (12 hr, 170°). An epimeric mixture (7:3 by NMR⁷) of <u>trans</u>-anti-<u>trans</u>⁸-14 α (eq)- and 14 β (ax)-hydroxyperhydrophenanthrene 7a 7b was obtained in a 80% yield. Pure 14 α hydroxyketone 8a^{5,6} (mp 135-136°) was obtained by demasking (1N HC1-acetone) the 7a-7b mixture and by subsequent separation from 14 β -hydroxyketone 8b⁹. The former compound 8a was then oxidized with DDQ in dioxane (3 day, reflux), obtaining 65% of dienone $9^{5,6}$ (mp 134-135°; ir(nujol) 1657, 1620, 1603 cm⁻¹;NMR & 6.24, 6.99 (each 1H, d, J_{AB}=10 Hz)). UV-irradiation of 9 in acetic acid solution furnished a cleanly (80%) rearranged monoenone $10^{5,6}$ (mp 178-180°; ir(nujol)1739, 1694, 1634 cm⁻¹;NMR & 0.89 (3H, s, CH₂-C-OAc, shielded by its <u>endo</u> nature)).

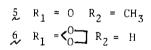

553

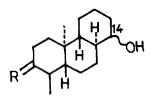
After conversion of 10 to 14-0-THP ether 11^6 , the latter was treated with CH₃ONa- HCO_{2} Et in benzenc (rt) to give a 85% yield of a tautomeric mixture of enone $12^{5,6}$ (mp 157-165°; ir(nujo1) 2720, 1740, 1725, 1690, 1658, 1640 cm⁻¹; NMR 89.19 (0.5H. q, J=3+1 Hz, CHO, a long rage coupling with C-1 H), 6.90 (0.5H, s, =CH-OH of enolic form)). The mixture was treated with p-TsCl-n-BuSH in pyridine (rt, 3day), and Z methylene thioether 13^{6} , 10 (ir(CHCl₃) 1574 cm⁻¹;NMR $\delta 6.66$ (1H, s, vinylic H)) and its E isomer $14^{6,10,11}$ (ir(CHCl₃) 1594 cm⁻¹;NMR δ 7.27 (1H, s, vinylic H)) were obtained in the 45 and 30% yields, respectively. 4,4-Dimethylation of 13 was effected in HMPT-benzene (1:2) solution by means of methyl iodide (excess) in the presence of $CH_3SOCH_2^-$. 4,4-Dimethyl compound $15^{6,10}$ (NMR $\delta 1.02$, 1.08, 1.23 (each 3H, s)) and an unwanted product, 6-monomethyl compound $16^{6,10}$ (NMR $\delta 1.10$ (3 H, d, J=6 Hz)) were obtained in the 55 and 10% yields. n-Butylmercaptomethylene group of 15 was removed by hydrolysis with 10% KOH-ethanol (5 hr, reflux), and deacetylated ketone $17^{5,10}$ (ir(CHCl₃) 1746, 1681 cm⁻¹) was obtained in a 50%yield. Hydrolysis of 14-0-THP group of 17 followed by acetylation of the hydrolytic product yielded an amorphous 14-0-acetate 18⁵.

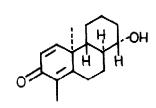

The upfield chemical shift due to C-10 methyl group of hydroazulene 18 (δ 0.92) suggested a conformation 19 for this compound. It was therefore anticipated that electrophilic attack at the 5,6 double bond of 18 would occur from the β side. In fact, treatment of 18 with OsO₄ (2 mol) in pyridine (rt, 3 day) selectively produced A,B-<u>cis</u>-5,6-<u>cis</u>-glycol 20^{5,6} in a 85% yield (mp 178-179°;NMR δ 1.15 (6H, s), 1.21 (3H, s), 3.76 (1H, q, J_{AX+BX}=3+10 Hz, C-6 H)). The glycol 20 was then brominated (Br₂-CHCl₃, rt, 3 hr) and 2B-bromoketone 21^{5,6,8} was obtained (mp 119-120°;NMR δ 2.92 (1H, d, J=7 Hz, C-2 H), 3.77 (1H, q, J_{AX+BX}= 3+10 Hz, C-6 H)) in a yield of 90%. Dehydrobromination of 21 with LiCl-DMF (100°; 5 hr) gave α,β -unsaturated ketone 22^{5,6} in a 75% yield (mp 164-165°;ir(nujol) 1686, 1603 cm⁻¹;NMR δ 5.88 (1H, s);uv (EtOH) 225 nm (ϵ 9,000)).

A crucial step in the relay synthesis was the preparation step for A,B-<u>trans</u> dihydro compound of 22. This conversion was performed by using trimesitylborane¹² (10 mol)-Na (10 mol)-t-BuOH in a dry and oxygen-free THF (argon atmosphere, addition of t-BuOH at -20~-30°, then rt, 1 day). Sequential acetonization (HClO₄-acetone, rt, 1 day) of the crude reduction product and oxidation (CrO₃-pyridine,

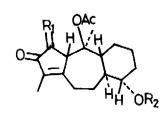
rt, 1 day) gave rise to the formation of the desired diketone 3 (mp 208-211°; ir (nujol) 1750, 1710, 1630 cm⁻¹) in a 4.5% overall yield from 22. The racemic diketone thus obtained was identical (NMR, ir, tlc) with the optically active sample, mp 196.0-196.5°, $[\alpha]_D^{25}$ -106° (c=1, MeOH). The latter was obtained by oxidation (CrO₃-pyridine) of the known degradation product 2. Finally, the optically active diketone 3 was reverted to 2 by the following sequential procedures: i) selective ketalization at C-14 (ethylene glycol-p-TsOH-benzene, reflux, 8 hr, 80%, $23^{5,6}$, amorphous solid; $[\alpha]_D^{25}$ -67° (c=1, MeOH)), ii) stereo-specific reduction from α -face at C-3 (NaBH₄ in methanol, rt, 90%, 24^{5} , amorphou: solid; $[\alpha]_D^{25}$ -15° (c=1, MeOH)), and iii) hydrolysis (2N HCl in acetone, reflux, 1 hr, quantitative).

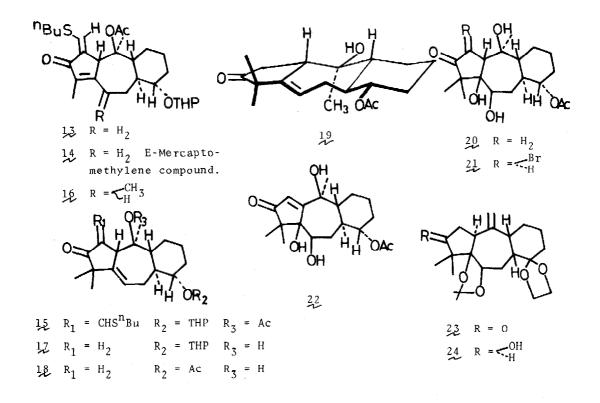






GII 1





9 ~

555

1. N. Hamanaka and T. Matsumoto, <u>Tetrahedron Lett</u>., 3087 (1972).

- J. Iwasa and Y. Nakamura, <u>Tetrahedron Lett</u>., 3973 (1969); P. Narayanan,
 M. Rohrl, K. Zechmeister and W. Hoppe, <u>Tetrahedron Lett</u>., 3943 (1970).
- A number of grayanoids are known. For recent examples see N. Hamanaka,
 A. Furusaki, H. Miyakoshi and T. Matsumoto, <u>Chem. Lett.</u>, 779 (1972).
- M. Shiozaki, K. Mori and M. Matsui, <u>Agr. Biol. Chem</u>., <u>36</u>, 2539 (1972). For convenience the kauranoid numbering scheme was used.
- 5. Elemental composition of this compound was confirmed by combustion analyses.
- 6. Satisfactory ir and NMR spectral data were obtained for this intermediate.
- 7. All NMR spectra were taken in $CDCl_{\tau}$ solution using TMS as internal standard.
- 8. The structure was later fully verified by X-ray analysis of 21. The details of the X-ray analysis will be published elsewhere.
- 9. The 14B-hydroxyketone $8b^{5,6}$, mp 125-126°, also was used as an intermediate for the preparation of 9. Details will be described in a full paper.
- 10. Most THP ethers described in the present report were amorphous and analyzed as crystalline demasked alcohols.
- 11. Convertible to the Z isomer by UV-irradiation.
- 12. S. D. Darling, O. N. Devgan and R. E. Cosgrove, J.Amer.Chem.Soc., 92,696(1970)